Urethane oligomers as raw materials and intermediates for polyurethane elastomers. Methods for synthesis, structural studies and analysis of chemical composition

Piotr Król*, Barbara Pilch-Pitera

Department of Polymer Science, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland

Received 21 January 2003; received in revised form 2 May 2003; accepted 15 May 2003

Abstract

Based on earlier models developed for polyaddition of diisocyanates and polyols, a non-stoichiometric process was provided for step-by-step polymerisation of 2,4- and 2,6-tolylene diisocyanate (TDI) with diols which had various molecule sizes and the nature of polyethers and polyesters. Said process yielded urethane oligomers which had -NCO or -OH groups as their chain end groups. After elimination of excess monomer, these compounds were - at subsequent stages $(2-5)$ _subjected to further reaction with diisocyanate or with selected polyol. The process was operated in bulk and excess monomers were eliminated with the use of the selective extraction method. Linear products were obtained in that way which had well defined chain structures and narrow distribution of their molecular weights (MWD) PD $=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}=1.1-1.3$. On the basis of IR and mass spectrometry (MS) (electrospray ionization (ESI) and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)) structural analyses, the expected structures of oligomers were confirmed and the actual compositions of polyurethane mixtures formed at every stage of the polymerisation process could be verified against the data obtained from the model, from the balance calculations (based on determinations of free isocyanate groups) and from the findings of the gel-permeation chromatography (GPC) analysis. Applicability of the presented method was demonstrated and the general scheme was suggested for the process discussed. (C) 2003 Published by Elsevier Science Ltd.

Keywords: Polyurethanes; Urethane oligomers; Step-by-step polyaddition process

1. Introduction

Some special applications of polyurethanes (PUs), like membranes, coatings which are biocompatible with living tissues and body fluids (e.g. blood) [1,2], liquid crystal mesogenes with non-linear optical properties [3,4], coatings which are modified by covering them with orderly organic mono- and multi-layers [5], and/or waterborne emulsions and dispersions which incorporate polyacrylates and which have the structures similar to those of interpenetrating polymer networks (IPNs) [6,7], require more and more frequently a precisely defined chemical composition and a narrow distribution of molecular weights, both for intermediates and for polyurethanes to be employed in the manufacturing processes. An interesting example for such an application is the synthesis of urethane-vinyl copoly-

[^0]mers by the controlled/living radical polymerisation (CRP) method with the use of urethane macro-initiators [8].

It is a relatively difficult task to manufacture products with controlled chemical compositions and narrow MWDs in case of polymers obtained from the step-by-step polymerisation methods. That effect becomes available in chain growth polymerisation processes when the living ion polymerisation method or one of CRP methods (NMP or ATRP) is employed [9]. The progress in step-by-step polymerisation, which is based on the reaction of functional groups in monomers and on converting said monomers into bigger and bigger oligomers and polymers, can be controlled only to some extent by means of the initial molar ratio of functional groups. It is known on the grounds of Flory's theory that the equimolar ratio of functional groups is favourable for the formation of high-molecular-weight polyaddition products, while the polymer so produced will have a considerably high polydispersity PD $=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}} \gg 3.0$ at the same time [10]. Our earlier reports demonstrated that the ratio PD could be
reduced by running a non-stoichiometric polyaddition reaction of diisocyanurate and polyol with considerable excess of one of monomers. However, unconverted excess of that raw material needs to be separated (eliminated) after every process stage. Yet, the formal polymerisation degree DP of the polymer formed at every stage does not exceed 3 then $[11,12]$. The question arises if that method could be employed to produce linear PUs with well-defined and repeatable chemical structures, and what impact can be expected from that structure on the arrangements of chains within the supermolecular structures, i.e. segments responsible for the flexible and rigid phases of that polyurethane? The generated phase structure is known to be decisive for the physical-mechanical properties of PU plastics. At the early stage, we tried to find the answer to the above question by synthesizing oligourethanes with various molecular weights in the reaction of 2,4-TDI and 2,6-TDI (TDI) with butane-1,4-diol (BD). The reactions were proceeding in tetrahydrofuran (THF); the solvent was used to control viscosity of the system [11]. Our another study covered numerous stages of the synthesis which was carried out in bulk only and which employed-in addition to BD-also poly(oxyethylene)glycols (POGs) with $\bar{M}_{\mathrm{n}}=200,400,600$ and $1000 \mathrm{~g} / \mathrm{mol}$ [12].

Having in mind that the supermolecular structures of linear oligourethanes are influenced by the presence of intermolecular hydrogen bonds which are much more numerous in the segments formed with the participation of polyesters than in polyether-urethane segments, it seemed justifiable not only using POGs but also polyester-polyols and $[13,14]$. We decided to utilise polycaprolactone diols (PCDs) with $\bar{M}_{\mathrm{n}}=530$ and $1250 \mathrm{~g} / \mathrm{mol}$.

This report presents the findings from our investigations. Theoretical grounds have been provided for the polyaddition method adopted in the study, the developed ways of producing urethane oligomers with precisely defined compositions and structures have been described, and the findings from structural analyses have been shown.

2. Concept for the step-by-step polyaddition process

The model of the stipulated step-by-step polyaddition process was based on the controlled synthesis procedure that made use of the kinetic model developed for a series of successive-parallel reactions. The scheme was just an expansion of a generally known equation describing the process which yields linear PUs:

$$
\begin{align*}
& n \mathrm{HO}-\mathrm{R}_{1}-\mathrm{OH}+n \mathrm{OCN}-\mathrm{R}_{2}-\mathrm{NCO} \rightarrow \\
& \quad \sim\left(-\mathrm{O}-\mathrm{R}_{1}-\mathrm{O}-\mathrm{OC}-\mathrm{NH}-\mathrm{R}_{2}-\mathrm{NH}-\mathrm{CO}-\right)_{n} \sim \tag{1}
\end{align*}
$$

where R_{1} is the aliphatic or aromatic moiety derived from low-molecular-weight diol, polyether-diol or polyester-
diol and R_{2} is the aliphatic, aromatic or alicyclic moiety in diisocyanate.

The process considered can be presented as a train of successive-parallel irreversible reactions:
$\mathrm{A}+4 \mathrm{~B} \rightarrow \mathrm{~A}_{1} \mathrm{~B}_{2}+2 \mathrm{~B}, \quad \mathrm{~A}_{1} \mathrm{~B}_{2}+4 \mathrm{~A} \rightarrow \mathrm{~A}_{3} \mathrm{~B}_{2}+2 \mathrm{~A}$,
$\mathrm{A}_{3} \mathrm{~B}_{2}+4 \mathrm{~B} \rightarrow \mathrm{~A}_{3} \mathrm{~B}_{4}+2 \mathrm{~B} \ldots$
wherein each reaction has its specific rate constant k_{i}. In this scheme: A stands for BD, POG or PCD; B is one of TDI isomers; $\mathrm{A}_{n} \mathrm{~B}_{m}$, the corresponding oligourethane which can be urethane diol $\mathrm{A}_{n+1} \mathrm{~B}_{n}$ or urethane-diisocyanate $\mathrm{A}_{n} \mathrm{~B}_{n+1}$. Oligourethane, which is a product of one or a series of a few reactions, makes a substrate for some subsequent stage and reacts with a monomer, A or B , then.

In the beginning, we utilised kinetic models that were developed earlier, for numerical simulations of the planned processes; the use of different diisocyanates and polyols was assumed [15-17]. The simulation procedures made it possible to calculate changes in concentrations of reacting substances during the process as well as the number-average molecular weight of PUs in relation to the reaction conditions adopted, i.e. molar ratio of functional groups, molecular weight of polyol, and temperature, which was represented with the rate constant k_{1} for reaction 1 in scheme (2) utilised in calculations. The developed procedures made it also possible to adjust for changing reactivity of diisocyanate. The so-called substitution effect could thus be considered which is responsible for declining reactivity of the second - NCO group in an aromatic diisocyanate, e.g. in 2,6-TDI, after its first group has been converted into a corresponding carbamate structure [17].

Fig. 1 shows the examples of calculated molecular weights for oligourethanes at successive stages of equimolar ($r=1$) polyaddition of 2,4-TDI and 2,6-TDI

Fig. 1. Graphical presentation of model relationships between molecular weight $\left(\bar{M}_{\mathrm{n}}\right)$ of PU and time at the fixed reaction constant $\left(k_{1}\right)$ in polyaddition of TDI to $1,4-\mathrm{BD}(r=1)$.

Fig. 2. Molecular weight $\left(\bar{M}_{\mathrm{n}}\right)$ of PU in relation to the number of the step/stage in polyaddition of TDI to POG-200 ($k_{1}=0.0005 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}, r=4$).
with $1,4-\mathrm{BD}$, in relation to the value of k_{1}. Fig. 2 shows the simulation results for the urethane oligomers production process which has been based on the reaction of TDI and POG 200, with the reaction proceeding with no external catalyst at about $55^{\circ} \mathrm{C}$. The simulation was limited to cover $5-6$ stages which were then implemented in practice [18]. The calculation results were helpful in designing a multi-stage method for the synthesis of urethane oligomers.

3. Experimental

3.1. Raw materials and reagents

- 2,4- and 2,6-Tolylene diisocyanate (TDI). A commercial product was used in the study. It was a mixture of 2,4TDI and $2,6-\mathrm{TDI}$ isomers at the ratio of 80 and 20%, respectively, from Aldrich.
- Polyoxyethylene glycol (POG) with $\bar{M}_{\mathrm{n}}=200,300,400$, 600 and $1000 \mathrm{~g} / \mathrm{mol}$, from Aldrich. The glycols were dried under vacuum in N_{2}, at temp. $110^{\circ} \mathrm{C}$, during 2 h .
- Polycaprolactone diol (PCD) with $\bar{M}_{\mathrm{n}}=530$ and 1250 , from Aldrich.
- Benzoyl chloride (pure), from POCh-Gliwice, Poland.
- 1,4-Butanediol (BD) (pure), from Aldrich.
- The solvents: hexane, ethyl acetate, toluene, xylene, carbon tetrachloride, and tetrahydrofuran were reagent grade materials, supplied by POCh-Gliwice, Poland.

3.2. Method for the synthesis of urethane oligomers

The reactions were carried out in bulk in a glass reactor, under nitrogen. Benzoyl chloride was used ($0.3 \mathrm{wt} \%$ with respect to TDI) as a viscosity control agent; moreover, its use made it possible to expand the stability period of synthesised prepolymers $\mathrm{A}_{n} \mathrm{~B}_{n+1}$ and hence the prepolymers could be employed as parent substances in subsequent reactions. The polyaddition process was always initiated by

337	Table 1				
338	Specifications for the reactions which yield urethane oligomers				
339	Symbol of oligomer	No. for polyaddition stage	Basic reaction in polyaddition stage	Polyol component	Extraction solvent system for excess monomer

Table 1 (continued)			
Symbol of oligomer	No. for polyaddition stage	Basic reaction in polyaddition stage	Polyol component
Extraction solvent system for excess monomer			
IV-530a			
IV-530b	PCD 530		
IV-1250a	PCD 530		
IV-1250b	PCD 1250		
V-BDa	PCD 1250		
V-BDb	BD		
V-200a	BD		
V-200b		POG 200	
V-300a		POG 200	
V-300b		POG 300	
V-400a		POG 300	
V-400b		POG 400	
V-600a		POG 400	Like at stage I
V-600b		POG 600	
V-1000a		POG 600	
V-1000b		POG 1000	
V-530a	POG 1000		
V-530b		PCD 530	
V-1250a		PCD 530	
V-1250b		PCD 1250	

a reaction which proceeded at a considerable excess of diisocyanate (B). In order to make the complete conversion possible for the parent substances A or B which were in short supply, each reaction - what can be observed in diagram (2)-was carried out at 100% excess of the other reacting substance-BD, POG, PCD or TDI. The feeds were introduced under possibly mild conditions to avoid any uncontrolled conversion of - NCO groups which were still present in the system to allophanates or their cyclisation to isocyanurates. No external catalyst was employed in our experiments. A calculated amount of hydroxyl-terminated or isocyanate-terminated oligomer prepared at an earlier stage was introduced dropwise to TDI or to appropriate glycol, respectively. It was always the minor component that was introduced to the component which was present in excess. The time of introduction was adjusted to last ca. 30 min . The reacting mixture was maintained at $65 \pm 1^{\circ} \mathrm{C}$. The temperature was kept at that level for another 2 h after the predefined volume of the minority component had been added. Extraction was employed to remove excess unconverted monomer after every stage and thus purified intermediate $\mathrm{A}_{n} \mathrm{~B}_{m}$ could be employed as a parent substance for another polyaddition stage.

The principal reactions for every stage $\mathrm{I}-\mathrm{V}$ are presented in Table 1. The letter a denotes the samples taken directly from the reactor, while the letter b denotes the products after extracting out the excess of TDI or diol.

On the basis of assumed reaction stoichiometry and experimentally determined content of free -NCO groups we could calculate the compositions of initial mixtures, i.e. weight fractions for substrates $\left(\mathrm{A}_{n} \mathrm{~B}_{n+1}\right.$ and B at odd stages $1,3,5$, as well as $\mathrm{A}_{n+1} \mathrm{~B}_{n}$ and A at even stages 2 and 4 of the processes) and for reaction products. In case of even stages

2 and 4, the course of reaction-which conformed to our expectations-and hence the expected chemical compositions of the urethane-hydroxyl oligomers formed was confirmed indirectly by comparing the theoretical and experimental losses in weight for samples after excess monomer A had been extracted out of them.

Exemplary compositions of mixtures at successive stages of the reaction between BD and TDI are shown diagrammatically in Fig. 3.

3.3. Example I-synthesis of urethane oligomers from TDI and $B D$

I stage. In a $1 \mathrm{dm}^{3}$ jacketed glass reactor fitted with reflux condenser, stirrer and nitrogen inlet tube TDI (696.68 g , $4 \mathrm{M})$ and benzoyl chloride ($2.09 \mathrm{~g}, 0.3 \mathrm{wt} \%$) was charged. After heating the reaction mixture to $65 \pm 1{ }^{\circ} \mathrm{C}, \mathrm{BD}$ $(90.00 \mathrm{~g}, 1 \mathrm{M})$ was added drop by drop in the time of 30 min . Then the heating was continued 2 h in order to supply total BD conversion. After the end of the reaction, precipitate of the product (I-BDa) was washed by the mixture n-hexane and ethyl acetate equal $2: 1$. The concentration of -NCO groups after the end of extraction amount 36.32% (theoretically: 39.43%). The obtained product $\mathrm{I}-\mathrm{BDb}$ was dried under a vacuum in the time of 15 min and then used as a substrate in the next stage.

II stage. In a $1 \mathrm{dm}^{3}$ jacketed glass reactor $\mathrm{BD}(300.29 \mathrm{~g}$, 3.34 M) and benzoyl chloride ($0.12 \mathrm{~g}, 0.3 \mathrm{wt} \%$ to I-BDb). After heating the reaction mixture to $65 \pm 1{ }^{\circ} \mathrm{C}$, $\mathrm{I}-\mathrm{BDb}$ $(400.00 \mathrm{~g}, 0.834 \mathrm{M})$ was added drop by drop in the time of 30 min . Then, heating was continued 2 h . The obtained product (II-BDa) was in the form of very sticky liquid. Very little amount of THF was added to it in order to make the
extraction easier. Unreacted excess of BD was extracted by. The extraction was carried out to get constant weight of the sample according to theoretical dates $(580.00 \mathrm{~g} ; 0.834 \mathrm{M})$. At the end of the extraction, the product was dried under a vacuum at $90^{\circ} \mathrm{C}$ in 15 min . The product II-BDb was a hard and transparent resin.

III stage. The reaction was carried out analogous to the I stage $300.00 \mathrm{~g}(0.50 \mathrm{M}) \mathrm{II}-\mathrm{BDb}$ and $348.34 \mathrm{~g}(2.00 \mathrm{M})$ TDI were used. The concentration of the - NCO groups in the final product after extraction (III-BDb) amounted to 14.28% (theoretically: 17.28\%).

IV stage. The reaction was carried out analogous to the II stage. $300.00 \mathrm{~g}(0.246 \mathrm{M}) \mathrm{III}-\mathrm{BDb}$ and $88.55 \mathrm{~g}(0.984 \mathrm{M})$ BD were used. The extraction was carried out by water till constant weight 344.27 g (0.246 M) of the product (VBDb).
V stage. Analogous to the I or III stage.

3.4. Example II—synthesis of urethane oligomers from TDI and PEG 200

I stage. In a $1 \mathrm{dm}^{3}$ jacketed glass reactor fitted with reflux condenser, stirrer and nitrogen inlet tube TDI (348.34 g , 2 M) and benzoyl chloride ($1.05 \mathrm{~g}, 0.3 \mathrm{wt} \%$) was charged. After heating the reaction mixture to $65 \pm 1{ }^{\circ} \mathrm{C}$, PEG 200 ($100,00 \mathrm{~g}, 0.5 \mathrm{M}$) was added drop by drop in 30 min . Then, heating was continued 2 h in order to supply total glycol conversion. At the end of the reaction, liquid product (I200a) was extracted by the mixture n-hexane and ethyl acetate equal $2: 1$. At the end of extraction, the rest of the product (I-200b) was evaporated under vacuum. The concentration of -NCO groups after the completion of extraction amounts to 27.06% (theoretically: 31.76%).

II stage. In a $1 \mathrm{dm}^{3}$ jacketed glass reactor PEG 200 $(372.88 \mathrm{~g}, 1.86 \mathrm{M})$ and benzoyl chloride $(0.9 \mathrm{~g}, 0.3 \mathrm{wt} \%$ to I-200b). After heating the reaction mixture to $65 \pm 1^{\circ} \mathrm{C}$, 300.00 g (0.47 M) I-200b was added in 30 min . Then, the heating was continued for 2 h . The obtained product was in a form of sticky liquid. Unreacted excess of PEG 200 was extracted by toluene. The extraction was carried out to getting the weight of sample as theoretical one $(486.44 \mathrm{~g}$, $0.47 \mathrm{M})$. At the end of the extraction, the rest of toluene was evaporated under vacuum. The product (II-200b) was obtained in the form of sticky liquid.

III and V stage. Analogous to the I stage.
IV stage. Analogous to the II stage.

3.5. Analytical methods

Concentration of NCO groups. The typical dibutylamine method was employed. Excess of unreacted dibutylamine was titrated with aqueous HCl against bromophenol blue [19].

Viscosity measurements. Dynamic viscosity of oligomers $\mathrm{A}_{n} \mathrm{~B}_{m}$ was determined at $25^{\circ} \mathrm{C}$ with the use of a rotational Rheotest 2 viscometer (Rheotest GmbH). Cylinders of H
type were used at the revolution range of $3 b$ to $12 a$ (range I), depending on the type of product. No dependence of viscosity on shear rate was observed in practice.

Structural analysis. IR spectra were recorded on a Spekord M60 apparatus (Zeiss, Germany). The samples were in the form of a thin film on polyethylene substrate.

Mass spectrometry $(M S)$. The mass spectra of the resulting polyurethane oligomers were recorded on an electrospray ionisation spectrometer (ESI MS) Finnigan MAT 95S (Germany) and on a MALDI MS spectrometer. ESI spectra were obtained by using KJ solution for ionisation. The mobile phase $\left(\mathrm{CH}_{3} \mathrm{OH}+\mathrm{THF}\right)$ flow rate was set up at $5 \mu \mathrm{dm}^{3} / \mathrm{min}$. Only the positive ions were recorded in the range of $200-2000 \mathrm{M} / \mathrm{z}$; their molecular weight specifications were enlarged by the mass of K^{+}(39) or Na^{+}(22) originating essentially from impurities. The samples were diluted with methanol to the concentration of $\mathrm{pmol} / \mathrm{dm}^{3}$.

MALDI spectra were recorded on a Voyager-Elite (Perseptive Biosystems, USA) apparatus in linear mode with delayed ion extraction. The instrument was equipped with N_{2} laser (337 nm) and the matrix was 2,5-dihydroxybenzoic acid (DHB, $M=153 \mathrm{~g} / \mathrm{mol}$) dissolved in THF $\left(10 \mathrm{mg} / \mathrm{cm}^{3}\right.$). The samples were also dissolved in THF (to concentration of $1 \mathrm{mg} / \mathrm{cm}^{3}$) and NaJ in acetone ($10 \mathrm{mg} / \mathrm{cm}^{3}$) was added. The ions with the mass increased by molecular weights of Na or K were recorded.

Gel permeation chromatography (GPC). The GPC apparatus used was a Viscotec T60A equipped with a triple detector: RI, light scattering (LS) and viscosity detector (DV). Separations were made at $30 \pm 0.1^{\circ} \mathrm{C}$ on a $\mathrm{GMH}_{\mathrm{HR}} \mathrm{L}$ column (size $7.8 \mathrm{~mm} \times 300 \mathrm{~mm}$) packed with TSK-gel of pore diameter $5 \mu \mathrm{~m}$ from Thoso-Haas, and Styragel 1 and 2 (size $7.8 \mathrm{~mm} \times 300 \mathrm{~mm}$) from Waters. The eluent (THF) flow rate was $1 \mathrm{~cm}^{3} / \mathrm{min}$, volume of inflow circuit$20 \mu \mathrm{dm}^{3}$. Operation of the chromatograph was controlled by original computer software TRISEC Data Acquisition System by Viscotec Corporation; deconvolution was possible for individual peaks which corresponded to nonhomogeneous oligomers. The results were interpreted on the basis of conventional calibration of columns with carbamate standards which had been synthesised especially for that purpose. Chromatographic analysis of standards yielded the calibration relation for logarithm of mass versus retention volume.
$\log M=-0,1595 V_{\text {ret }}+6.8219$
The differential curves for distribution of molecular weights as obtained from sample elution curves and from the calibration equation (3) were presented in the form of standardized charts: detector signal divided by the total area below the chromatogram - molecular weights of components. The internal standardization method was employed to find quantitative compositions of prepolymers from thus obtained chromatograms. A special computer software Peak Fit v4 was utilised for that purpose which attributed

Table 2
Interpretation for GPC chromatograms of monomers and urethane prepolymers

Symbol of oligomer	M_{n} as per MWD curves	Compound	Theoretical molecular weight ($\mathrm{g} / \mathrm{mol}$)	Amount of component as calculated by standardisation of GPC chro-matograms (wt\%)	Amount of component as calculated from reaction mass balance (wt\%)	$P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$
BD	96.9	A	90	100		1.00
I-BDb	177.7	B	174.17	8.03		1.05
	459.6	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}^{\text {a }}$	502.34	87.49	77.18	
	748.9	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	766.51	4.47	22.82	
II-BDb	350.6	$\mathrm{A}_{2} \mathrm{~B}_{1}$	354.17	6.92		1.16
	617.6	$\mathrm{A}_{3} \mathrm{~B}_{2}$	618.34	65.96	79.16	
	884.5	$\mathrm{A}_{4} \mathrm{~B}_{3}$	882.51	9.22	20.84	
	1146.1	$\mathrm{A}_{5} \mathrm{~B}_{4}$	1146.68	13.34		
	1390.2	$\mathrm{A}_{6} \mathrm{~B}_{5}$	1410.85	2.57		
	1633.7	$\mathrm{A}_{7} \mathrm{~B}_{6}$	1675.02	1.99		
III-BDb	182.1	B	174.17	4.12		1.30
	267.6	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	4.86	27.00	
	761.0	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	766.51	7.93	17.42	
	862.3	$\mathrm{A}_{3} \mathrm{~B}_{3}+\mathrm{CH}_{3} \mathrm{OH}$	824.51	4.49	55.60	
	1036.1	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	1030.68	53.09		
	1310.9	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	1294.85	9.54		
	1570.1	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	1559.02	9.12		
	1817.7	$\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$	1823.19	6.85		
IV-BDb	178.2			6.03		1.62
	378.7	$\mathrm{A}_{2} \mathrm{~B}_{1}$	354.17	0.80	27.91	
	894.1	$\mathrm{A}_{4} \mathrm{~B}_{3}$	882.51	6.43	17.39	
	1148.1	$\mathrm{A}_{5} \mathrm{~B}_{4}$	1146.68	33.95	54.28	
	1419.6	$\mathrm{A}_{6} \mathrm{~B}_{5}$	1410.85	8.62		
	1665.4	$\mathrm{A}_{7} \mathrm{~B}_{6}$	1675.02	9.33		
	1925.0	$\mathrm{A}_{8} \mathrm{~B}_{7}$	1939.19	7.72		
	2161.6	$\mathrm{A}_{9} \mathrm{~B}_{8}$	2203.36	8.95		
	2464.6	$\mathrm{A}_{10} \mathrm{~B}_{9}$	2467.53	11.43		
	2807.3	$\mathrm{A}_{11} \mathrm{~B}_{10}$	2731.70	6.71		
V-BDb	162.5	B	174.17	1.78		1.28
	727.5	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	766.51	0.92	26.80	
	995.6	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	1030.68	1.84	15.98	
	1190.7	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	1294.85	4.58	48.28	
	1418.7	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	1559.02	39.47	8.93	
	1705.1	$\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$	1823.19	9.46		
	1932.0	$\mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH}$	2087.36	9.84		
	2190.1	$\mathrm{A}_{8} \mathrm{~B}_{8}+\mathrm{CH}_{3} \mathrm{OH}$	2145.36	11.48		
	2435.1	$\mathrm{A}_{8} \mathrm{~B}_{9}+2 \mathrm{CH}_{3} \mathrm{OH}$	2351.53	4.41		
	2731.0	$\mathrm{A}_{9} \mathrm{~B}_{10}+2 \mathrm{CH}_{3} \mathrm{OH}$	2615.70	3.02		
	3062.2	$\mathrm{A}_{10} \mathrm{~B}_{11}+2 \mathrm{CH}_{3} \mathrm{OH}$	2879.87	2.62		
					(continu	on next page)

Symbol of oligomer	M_{n} as per MWD curves	Compound	Theoretical molecular weight (g/mol)	Amount of component as calculated by standardisation of GPC chro-matograms (wt\%)	Amount of component as calculated from reaction mass balance (wt\%)	$P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$
POG200	3455.7	$\mathrm{A}_{11} \mathrm{~B}_{12}+2 \mathrm{CH}_{3} \mathrm{OH}$	3144.04	2.15		
	105.0	A	$106(n=2)$	4.89		1.07
	117.8	A		46.54		
	152.9	A	$150(n=3)$	23.63		
	186.3	A	$194(n=4)$	14.95		
	214.7	A	$238(n=5)$	7.46		
	230.1		$282(n=6)$	2.53		
I-200b	170.5	B	174.17	20.00		1.31
	260.6	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	4.33	63.51	
	529.0	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$562.34\left(n_{1}=3\right)$	65.65	36.49	
	889.0	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$886.51\left(n_{1,2}=3\right)$	10.02		
II-200b	359.3			0.94		1.36
	513.3	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$562.17\left(n_{1,2}=4\right)$	5.65	67.75	
	901.0	$\mathrm{A}_{3} \mathrm{~B}_{2}$	886.34 ($n_{1}=3, n_{2,3}=4$)	24.83	32.25	
	1305.1	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$1298.51\left(n_{1-4}=4\right)$	16.65		
	1673.0	$\mathrm{A}_{5} \mathrm{~B}_{4}$	$1666.68\left(n_{1-5}=4\right)$	21.66		
	2088.8	$\mathrm{A}_{6} \mathrm{~B}_{5}$	2078.85 ($\left.n_{1-5}=4, n_{6}=5\right)$	16.25		
	2520.8	$\mathrm{A}_{7} \mathrm{~B}_{6}$	$2535.02\left(n_{1-4}=4, n_{5-7}=5\right)$	12.44		
	3072.9	$\mathrm{A}_{8} \mathrm{~B}_{7}$	3079.19 ($\left.n_{1}=4, n_{2-8}=5\right)$	1.58		
III-200b	187.8	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	1.00		1.43
	595.1	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$606.34\left(n_{1}=4\right)$	2.52	36.46	
	962.5	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$974.51\left(n_{1,2}=4\right)$	4.58	16.04	
	1361.7	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1342.68\left(n_{1-3}=4\right)$	5.47	47.50	
	1752.8	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1754.85\left(n_{1-3}=4, n_{4}=5\right)$	28.06		
	2121.3	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2123.02\left(n_{1-4}=4, n_{5}=5\right)$	27.15		
	2668.4	$\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$	2667.19 ($\left.n_{1}=4, n_{2-6}=5\right)$	20.64		
	3519.1	$\mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH}$	$3497.53\left(n_{1-7}=5\right)$	10.58		
IV-200b	105.9	A	$106(n=2)$	1.26		1.50
	482.6	$\mathrm{A}_{2} \mathrm{~B}_{1}$	474.17 ($n_{1,2}=3$)	1.64	38.36	
	846.6	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$886.34\left(n_{1}=3, n_{2,3}=4\right)$	2.05	15.98	
	1157.3	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$1166.51\left(n_{1-3}=3, n_{4}=4\right)$	1.94	45.66	
	1587.0	$\mathrm{A}_{5} \mathrm{~B}_{4}$	$1578.68\left(n_{1,2}=3, n_{3-5}=4\right)$	14.13		
	2029.3	$\mathrm{A}_{6} \mathrm{~B}_{5}$	2034.85 ($n_{1-6}=4$)	10.03		
	2400.1	$\mathrm{A}_{7} \mathrm{~B}_{6}$	$2403.02\left(n_{1-7}=4\right)$	17.56		
	2979.1	$\mathrm{A}_{8} \mathrm{~B}_{7}$	2947.19 ($\left.n_{1-4}=4, n_{5-8}=5\right)$	20.25		
	3860.4	$\mathrm{A}_{11} \mathrm{~B}_{10}$	$3875.70\left(n_{1-11}=4\right)$	19.24		
	5276.8	$\mathrm{A}_{14} \mathrm{~B}_{13}$	$5282.38\left(n_{1-8}=4, n_{9-14}=5\right)$	11.89		
V-200b	326.5		238.17	0.36		1.29
	629.10	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$606.34\left(n_{1}=4\right)$	1.77	28.90	
	1058.0	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1062.51\left(n_{1,2}=4\right)$	2.14	11.67	
	2177.9	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2167.02\left(n_{1-3}=4, n_{4,5}=5\right)$	11.15	32.61	

Symbol of oligomer	M_{n} as per MWD curves	Compound	Theoretical molecular weight (g/mol)	Amount of component as calculated by standardisation of GPC chro-matograms (wt\%)	Amount of component as calculated from reaction mass balance (wt\%)	$P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$
POG300		$\mathrm{A}_{6} \mathrm{~B}_{7}$	2383.19 ($\left.n_{1-6}=4\right)$		26.82	1.02
		$\mathrm{A}_{7} \mathrm{~B}_{8}$	$2751.36\left(n_{1-7}=4\right)$			
	3175.6	$\mathrm{A}_{8} \mathrm{~B}_{9}+2 \mathrm{CH}_{3} \mathrm{OH}$	3183.53 ($n_{1-8}=4$)	15.89		
	4369.2	$\mathrm{A}_{11} \mathrm{~B}_{12}+2 \mathrm{CH}_{3} \mathrm{OH}$	$4376.04\left(n_{1-9}=4, n_{10-12}=5\right)$	21.78		
	5814.6	$\mathrm{A}_{15} \mathrm{~B}_{16}+2 \mathrm{CH}_{3} \mathrm{OH}$	$5804.72\left(n_{1-14}=4, n_{15}=5\right)$	20.44		
	7230.1	$\mathrm{A}_{19} \mathrm{~B}_{20}+2 \mathrm{CH}_{3} \mathrm{OH}$	$7233.40\left(n_{1-19}=4\right)$	26.47		
	130.3	A	$150(n=3)$	10.30		
	164.9	A	$194(n=4)$	13.79		
	215.3	A	$238(n=5)$	17.64		
	260.4	A	$282(n=6)$	17.89		
	303.0	A	326 ($n=7$)	16.11		
	343.8	A	370 ($n=8$)	11.78		
	387.7	A	$414(n=9)$	7.25		
	456.6	A	$458(n=10)$	5.24		
I-300b	207.6	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	2.20		1.12
	607.2	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$650.34(n=5)$	82.83	66.40	
	1032.7	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1062.51(n=5)$	14.97	33.60	
II-300b	1245.6	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$1238.34\left(n_{1,2}=6, n_{3}=7\right)$	35.50	71.27	1.19
	1667.6	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$1694.51\left(n_{1-3}=6, n_{4}=7\right)$	10.18	28.73	
	2072.3	$\mathrm{A}_{5} \mathrm{~B}_{4}$	2106.68 ($n_{1-5}=6$)	28.94		
	2661.5	$\mathrm{A}_{6} \mathrm{~B}_{5}$	2694.85 ($\left.n_{1-3}=6, n_{4-6}=7\right)$	15.47		
	3212.3	$\mathrm{A}_{7} \mathrm{~B}_{6}$	3239.02 ($\left.n_{1,2}=6, n_{3-7}=7\right)$	6.93		
	3778.5	$\mathrm{A}_{8} \mathrm{~B}_{7}$	3783.19 ($\left.n_{1}=6, n_{2-8}=7\right)$	2.98		
III-300b	539.0			3.26		1.21
	890.1	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$826.34\left(n_{1}=9\right)$	3.82	46.03	
	1250.1	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1238.51\left(n_{1,2}=7\right)$	28.49	16.95	
	1618.7	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	1606.68 ($n_{1-3}=6$)	12.55	37.02	
	1928.4	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	1930.85 ($\left.n_{1-3}=5, n_{4}=6\right)$	21.20		
	2340.5	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2343.02\left(n_{1-4}=5, n_{5}=6\right)$	15.19		
	2784.5	$\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$	2799.19 ($\left.n_{1-4}=5, n_{5-6}=6\right)$	10.51		
	3315.5	$\mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH}$	3343.36 ($\left.n_{1-2}=5, n_{3-7}=6\right)$	4.97		
IV-300b	259.1	A	282 ($n=6$)	1.89		1.25
	1240.8	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$1238.34\left(n_{1,2}=6, n_{3}=7\right)$	2.40	48.38	
	1797.5	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$1782.51\left(n_{1}=6, n_{2-4}=7\right)$	17.78	16.71	
	2282.0	$\mathrm{A}_{5} \mathrm{~B}_{4}$	2194.68 ($\left.n_{1-3}=6, n_{4-5}=7\right)$	25.66	34.94	
	2733.8	$\mathrm{A}_{6} \mathrm{~B}_{5}$	2694.85 ($\left.n_{1-3}=6, n_{4-6}=7\right)$	31.67		
	3261.0	$\mathrm{A}_{7} \mathrm{~B}_{6}$	$3151.02\left(n_{1-4}=6, n_{5-7}=7\right)$	20.60		
V-300b	180.00	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	3.42		1.53
	1753.4	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	1738.68 ($\left.n_{1-3}=7\right)$	3.26	15.32	
	2387.0	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2387.02\left(n_{1-3}=5, n_{4-5}=6\right)$	12.46	5.16	

Symbol of oligomer	M_{n} as per MWD curves	Compound	Theoretical molecular weight (g/mol)	Amount of component as calculated by standardisation of GPC chro-matograms (wt\%)	Amount of component as calculated from reaction mass balance (wt\%)	$P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$
	3017.2	$\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$	2975.19 ($n_{1-6}=6$)	21.63	10.61	
	3732.1	$\mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH}$	$3739.36\left(n_{1-7}=7\right)$	29.04	68.90	
		$\mathrm{A}_{8} \mathrm{~B}_{9}$	3823.53 ($n_{1-8}=6$)			
	4442.9	$\mathrm{A}_{9} \mathrm{~B}_{10}+2 \mathrm{CH}_{3} \mathrm{OH}$	4455.70 ($\left.n_{1-5}=6, n_{6-9}=7\right)$	30.21		
POG400	79.5	A	$106(n=2)$	0.98		1.12
	133.4	A	$150(n=3)$	5.44		
	179.7	A	$194(n=4)$	10.03		
	226.0	A	$238(n=5)$	14.67		
	270.8	A	$282(n=6)$	17.46		
	314.2	A	326 ($n=7$)	17.00		
	357.5	A	$370(n=8)$	14.06		
	401.9	A	$414(n=9)$	10.23		
	451.6	A	$458(n=10)$	6.34		
	514.2	A	$502(n=11)$	3.78		
I-400b	201.9	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	1.23		1.24
	811.9	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	826.17 ($\left.n_{1}=9\right)$	75.16	82.87	
	1413.7	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	1414.51 ($\left.n_{1,2}=9\right)$	23.60	17.13	
II-400b	316.4	A	$326(n=7)$	1.51		1.60
	858.0	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$870.17\left(n_{1}=7, n_{2}=8\right)$	10.87	86.19	
	1527.1	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$1502.34\left(n_{1,2}=8, n_{3}=9\right)$	36.46	13.82	
	2114.8	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$2090.51\left(n_{1,2}=8, n_{3,4}=9\right)$	23.50		
	2704.4	$\mathrm{A}_{5} \mathrm{~B}_{4}$	2678.68 ($\left.n_{1,2}=8, n_{3-5}=9\right)$	20.41		
	3450.5	$\mathrm{A}_{6} \mathrm{~B}_{5}$	$3442.85\left(n_{1-4}=9, n_{5,6}=10\right)$	7.24		
III-400b	108.1	B	174.17	1.34		1.67
	862.1	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	870.17 ($\left.n_{1}=10\right)$	13.97	81.06	
	2078.3	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	2046.68 ($\left.n_{1,2}=9, n_{3}=10\right)$	43.78	12.34	
	3005.0	$\mathrm{A}_{4} \mathrm{~B}_{5}$	2526.85 ($\left.n_{1-4}=9\right)$	40.92	6.60	
		$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$3003.02\left(n_{1-4}=8, n_{5}=9\right)$			
IV-400b	319.7	A	326 ($n=7$)	2.31		1.30
	439.2	A	$458(n=10)$	2.32		
	923.2	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$914.17\left(n_{1,2}=8\right)$	4.76		
	1534.5	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$1502.34\left(n_{1,2}=8, n_{3}=9\right)$	3.94		
	2118.3	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$2090.51\left(n_{1,2}=8, n_{3,4}=9\right)$	22.46		
	2850.5	$\mathrm{A}_{5} \mathrm{~B}_{4}$	2854.68 ($n_{1-3}=9, n_{4,5}=10$)	22.74	82.38	
	3544.6	$\mathrm{A}_{6} \mathrm{~B}_{5}$	3530.85 ($\left.n_{1,2}=9, n_{3-6}=10\right)$	24.13	11.67	
		$\mathrm{A}_{7} \mathrm{~B}_{6}$	3943.02 ($\left.n_{1-7}=9\right)$		5.95	
	4363.5	$\mathrm{A}_{8} \mathrm{~B}_{7}$	4355.02 ($\left.n_{1-4}=8, n_{5-8}=9\right)$	17.34		
V-400b	756.5	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$782.17\left(n_{1}=8\right)$	1.17		1.39
	2136.6	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2134.68\left(n_{1-3}=10\right)$	4.28		
	3074.1	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$3047.02\left(n_{1-3}=8, n_{4,5}=9\right)$	21.43	41.97	
	4623.5	$\mathrm{A}_{6} \mathrm{~B}_{7}$	3703.19 ($\left.n_{1-6}=9\right)$		5.82	

Symbol of oligomer	M_{n} as per MWD curves	Compound	Theoretical molecular weight (g/mol)	Amount of component as calculated by standardisation of GPC chro-matograms ($\mathrm{wt} \%$)	Amount of component as calculated from reaction mass balance (wt\%)	$P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$
		$\begin{aligned} & \mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH} \\ & \mathrm{~A}_{8} \mathrm{~B}_{9} \end{aligned}$	$\begin{aligned} & 4619.36\left(n_{1}=9, n_{2-7}=10\right) \\ & 4879.53\left(n_{1-8}=9\right) \end{aligned}$	73.12	$\begin{array}{r} 2.92 \\ 49.29 \end{array}$	
POG 600	534.8	A	$546(n=12)$	100		1.03
I-600b	264.2	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	3.93		1.21
	1014.9	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	1002.34 ($n_{1}=13$)	76.92	88.97	
	1792.2	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1766.51\left(n_{1,2}=13\right)$	16.67	11.03	
	2456.4	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	2442.68 ($\left.n_{1,2}=12, \mathrm{n}_{3}=13\right)$	2.49		
II-600b	557.2	A	$546(n=12)$	13.24		1.66
	2188.2	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$2162.34\left(n_{1,2}=13, n_{3}=14\right)$	38.20	91.50	
	2907.8	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$2882.51\left(n_{1-4}=13\right)$	9.36	8.50	
	3600.2	$\mathrm{A}_{5} \mathrm{~B}_{4}$	3602.68 ($n_{1}=12, n_{2-5}=13$)	25.70		
	4543.5	$\mathrm{A}_{6} \mathrm{~B}_{5}$	4542.85 ($\left.n_{1-3}=13, n_{4-6}=14\right)$	13.50		
III-600b	186.6	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	0.81		1.64
	1045.7	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1046.34\left(n_{1}=14\right)$	5.38	33.74	
	1747.6	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1766.51\left(n_{1,2}=13\right)$	5.29	3.02	
		$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	2618.68 ($\left.n_{1}=13, n_{2,3}=14\right)$	31.38		
		$\mathrm{A}_{4} \mathrm{~B}_{5}$	$3230.85\left(n_{1-4}=13\right)$			
	3843.6	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$3839.02\left(n_{1-4}=12, n_{5}=13\right)$	20.36		
	5081.6	$\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$	$5087.19\left(n_{1-6}=14\right)$	36.77		
IV-600b	516.6	A	$546(n=12)$	5.28		1.50
	1306.5	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$1310.17\left(n_{1}=12, n_{2}=13\right)$	6.89	36.69	
	2244.9	$\mathrm{A}_{3} \mathrm{~B}_{2}$	$2250.34\left(n_{1-3}=14\right)$	7.59	3.05	
	3010.9	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$3014.51\left(n_{1}=13, n_{2-4}=14\right)$	9.65	60.26	
	3892.4	$\mathrm{A}_{5} \mathrm{~B}_{4}$	$3866.68\left(n_{1-5}=14\right)$	15.18		
		$\mathrm{A}_{6} \mathrm{~B}_{5}$	$4410.85\left(n_{1-6}=13\right)$	19.67		
	4939.2	$\mathrm{A}_{7} \mathrm{~B}_{6}$	$4955.02\left(n_{1-5}=12, n_{6,7}=13\right)$			
	6123.5	$\mathrm{A}_{8} \mathrm{~B}_{7}$	$6115.19\left(n_{1-4}=13, n_{5-8}=14\right)$	35.71		
V-600b	1091.6	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	1090.34 ($n_{1}=15$)	0.46		1.23
	1798.9	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1766.51\left(n_{1,2}=13\right)$	1.55		
	2698.5	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	2662.68 ($\left.n_{1-3}=14\right)$	4.47		
	3228.8	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	3250.85 ($\left.n_{1}=12, n_{2-4}=13\right)$	11.65		
	4274.3	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$4235.02\left(n_{1}=13, n_{2-5}=14\right)$	22.21	8.70	
		$\mathrm{A}_{6} \mathrm{~B}_{7}$	4759.19 ($\left.n_{1-6}=13\right)$		0.71	
	5692.6	$\mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH}$	$5675.36\left(n_{1-5}=13, n_{6,7}=14\right)$	29.21	13.93	
	6404.4	$\mathrm{A}_{8} \mathrm{~B}_{9}+2 \mathrm{CH}_{3} \mathrm{OH}$	$6395.53\left(n_{1-7}=13, \mathrm{n}_{8}=14\right)$	30.45	76.65	
POG 1000	1092.5	A	1074 ($n=24$)	100		1.10
I-1000b	276.4	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	2.79		1.37
	768.9			2.40		
	1448.4	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1442.34\left(n_{1}=23\right)$	63.79	67.08	

Symbol of oligomer	M_{n} as per MWD curves	Compound	Theoretical molecular weight (g/mol)	Amount of component as calculated by standardisation of GPC chro-matograms (wt\%)	Amount of component as calculated from reaction mass balance (wt\%)	$P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$
	2473.2	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2470.51\left(n_{1,2}=21\right)$	23.97	32.92	
	3294.5	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	3586.68 ($\left.n_{1-3}=21\right)$	7.06		
II-1000b	357.0			2.27		1.35
	907.4	A	$942(n=21)$	3.80		
	2367.4	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$2322.17\left(n_{1,2}=24\right)$	13.40		
	3235.1	$\mathrm{A}_{3} \mathrm{~B}_{2}$	3218.34 ($\left.n_{1,2}=21, n_{3}=22\right)$	32.50	73.84	
	4329.6	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$4378.51\left(n_{1,2}=21, n_{3,4}=22\right)$	28.72	26.16	
	5456.8	$\mathrm{A}_{5} \mathrm{~B}_{4}$	5450.68 ($\left.n_{1-4}=21, n_{5}=22\right)$	19.31		
III-1000b	197.6	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	3.15		1.35
	1398.5	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1398.34\left(n_{1}=22\right)$	6.74		
	2467.2	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2470.51\left(n_{1,2}=21\right)$	11.07		
	3575.1	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	3586.68 ($\left.n_{1-3}=21\right)$	24.54	43.21	
	4836.9	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	4878.85 ($\left.n_{1-4}=22\right)$	26.21	14.93	
	6306.7	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$6303.02\left(n_{1-4}=23, n_{5}=24\right)$	28.29	41.86	
IV-1000b	1937.2	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$2058.17\left(n_{1,2}=21\right)$	3.02		1.44
	3019.1	$\mathrm{A}_{3} \mathrm{~B}_{2}$	3174.34 ($\left.n_{1-3}=21\right)$	8.82		
	4501.6	$\mathrm{A}_{4} \mathrm{~B}_{3}$	$4510.51\left(n_{1-3}=22, n_{4}=23\right)$	12.09		
	5618.9	$\mathrm{A}_{5} \mathrm{~B}_{4}$	$5626.68\left(n_{1-5}=22\right)$	21.26	46.45	
	6752.8	$\mathrm{A}_{6} \mathrm{~B}_{5}$	$6786.85\left(n_{1-6}=22\right)$	22.42	14.68	
	8024.5	$\mathrm{A}_{7} \mathrm{~B}_{6}$	$8035.02\left(n_{1-5}=22, n_{6,7}=23\right)$	32.40	38.86	
V-1000b	375.4	$\mathrm{B}+2 \mathrm{CH}_{3} \mathrm{OH}$	238.17	4.08		2.37
	2068.8	$\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2470.51\left(n_{1,2}=21\right)$	7.55		
	3295.8	$\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$	3586.68 ($\left.n_{1-3}=21\right)$	10.45		
	4571.8	$\mathrm{A}_{4} \mathrm{~B}_{5}+2 \mathrm{CH}_{3} \mathrm{OH}$	4702.85 ($\left.n_{1-4}=21\right)$	25.92		
	6235.8	$\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$	$6259.02\left(n_{1-5}=23\right)$	32.18	39.25	
	8331	$\mathrm{A}_{6} \mathrm{~B}_{7}$	$7135.19\left(n_{1-6}=22\right)$		12.28	
		$\mathrm{A}_{7} \mathrm{~B}_{8}+2 \mathrm{CH}_{3} \mathrm{OH}$	$8359.19\left(n_{1-7}=22\right)$	17.82	32.28	
		$\mathrm{A}_{8} \mathrm{~B}_{9}$	$9455.53\left(n_{1-8}=22\right)$		16.19	
PCD	113.2	A	$116(n=0)$	7.06		1.69
530	173.8			8.46		
	242.0	A	$220(n=1)$	8.98		
	315.2	A	$334(n=2)$	9.04		
	392.2			8.81		
	473.7	A	$471(n=3)$	8.49		
	558.8	A	$585(n=4)$	8.08		
	647.7	A	$699(n=5)$	7.52		
	740.7			6.90		
	838.9	A	$813(n=6)$	6.27		
	944.2	A	$927(n=7)$	5.57		
	1058.1	A	$1041(n=8)$	4.76		
	1181.7	A	$1155(n=9)$	3.79		

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol of oligomer \& M_{n} as per MWD curves \& Compound \& Theoretical molecular weight (g/mol) \& Amount of component as calculated by standardisation of GPC chro-matograms ($\mathrm{wt} \%$) \& Amount of component as calculated from reaction mass balance (wt\%) \& $P D=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$

\hline \multirow{19}{*}{I-530b} \& 1317.2 \& A \& $1383(n=11)$ \& 2.79 \& \multirow{19}{*}{95.35

4.65} \& \multirow{19}{*}{1.22}

\hline \& 1466.8 \& A \& $1497(n=12)$ \& 1.87 \& \&

\hline \& 1635.4 \& A \& $1611(n=13)$ \& 1.09 \& \&

\hline \& 1834.0 \& A \& $1725(n=14)$ \& 0.52 \& \&

\hline \& 397.8 \& B_{2} \& 412 \& 7.94 \& \&

\hline \& 548.5 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $541.34\left(n_{1}=0\right)$ \& 8.92 \& \&

\hline \& 750.0 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $769.34\left(n_{1}=2\right)$ \& 14.40 \& \&

\hline \& 882.5 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $883.34\left(n_{1}=3\right)$ \& 10.11 \& \&

\hline \& 1014.9 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $997.34\left(n_{1}=4\right)$ \& 8.95 \& \&

\hline \& 1135.4 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $1111.34\left(n_{1}=5\right)$ \& 8.14 \& \&

\hline \& 1263.4 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $1225.34\left(n_{1}=6\right)$ \& 7.29 \& \&

\hline \& 1404.8 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $1453.34\left(n_{1}=8\right)$ \& 6.75 \& \&

\hline \& 1562.6 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $1569.34\left(n_{1}=9\right)$ \& 6.29 \& \&

\hline \& 1736.7 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $1795.34\left(n_{1}=11\right)$ \& 5.78 \& \&

\hline \& 1921.1 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $1909.34\left(n_{1}=12\right)$ \& 5.04 \& \&

\hline \& 2161.8 \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2137.34\left(n_{1}=14\right)$ \& 4.16 \& \&

\hline \& 2421.2 \& $\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2490.51\left(n_{1,2}=11\right)$ \& 3.14 \& \&

\hline \& 2695.2 \& $\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2718.51\left(n_{1,2}=13\right)$ \& 2.04 \& \&

\hline \& 2994.0 \& $\mathrm{A}_{2} \mathrm{~B}_{3}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2946.51\left(n_{1,2}=15\right)$ \& 1.04 \& \&

\hline \multirow[t]{2}{*}{II-530b} \& \multirow[t]{2}{*}{1937.4} \& $\mathrm{A}_{3} \mathrm{~B}_{2}$ \& $1875.34\left(n_{1,2}=3, n_{3}=4\right)$ \& \multirow[t]{2}{*}{100} \& 90.44 \& \multirow[t]{2}{*}{1.83}

\hline \& \& $\mathrm{A}_{4} \mathrm{~B}_{3}$ \& $2862.51\left(n_{1-4}=4\right)$ \& \& 9.56 \&

\hline \multirow[t]{4}{*}{III-530b} \& \& \& \& 16.49 \& \& \multirow[t]{4}{*}{1.61}

\hline \& \multirow[t]{2}{*}{2287.1} \& $\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2223.68\left(n_{1,2}=3, n_{3}=4\right)$ \& \multirow[t]{2}{*}{41.64} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
70.45 \\
6.69
\end{array}
$$} \&

\hline \& \& $\mathrm{A}_{4} \mathrm{~B}_{5}$ \& 3210.85 ($n_{1-4}=4$) \& \& \&

\hline \& 3837.5 \& $\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $3856.02\left(n_{1}=3, n_{2-5}=4\right)$ \& 41.87 \& 22.86 \&

\hline \multirow[t]{5}{*}{IV-530b} \& \& \& 1230.17 ($n_{1}=3, n_{2}=4$) \& \& \& \multirow[t]{5}{*}{1.26}

\hline \& $$
2036.6
$$ \& $\mathrm{A}_{3} \mathrm{~B}_{2}$ \& 1989.34 ($\left.n_{1}=3, n_{2,3}=4\right)$ \& 17.71 \& \&

\hline \& 3323.0 \& $\mathrm{A}_{5} \mathrm{~B}_{4}$ \& $3279.68\left(n_{1-3}=3, n_{4,5}=4\right)$ \& 36.01 \& 71.88 \&

\hline \& \multirow[t]{2}{*}{4213.9} \& $\mathrm{A}_{6} \mathrm{~B}_{5}$ \& $$
4152.85\left(n_{1,2}=3, n_{3-6}=4\right)
$$ \& 35.87 \& 6.32 \&

\hline \& \& $\mathrm{A}_{7} \mathrm{~B}_{6}$ \& $$
5140.02\left(n_{1-7}=4\right)
$$ \& \& 21.81 \&

\hline \multirow[t]{5}{*}{V-530b} \& 2376.3 \& $\mathrm{A}_{3} \mathrm{~B}_{4}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2337.68\left(n_{1}=3, n_{2,3}=4\right)$ \& 21.76 \& \& 1.12

\hline \& 3777.1 \& $\mathrm{A}_{5} \mathrm{~B}_{6}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $3742.02\left(n_{1,2}=3, n_{3-6}=4\right)$ \& 52.92 \& 15.58 \&

\hline \& \multirow[t]{3}{*}{4553.7} \& $\mathrm{A}_{6} \mathrm{~B}_{7}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $4501.19\left(n_{1,2}=3, n_{3-6}=4\right)$ \& \multirow[t]{3}{*}{25.32} \& 1.35 \&

\hline \& \& $$
\mathrm{A}_{7} \mathrm{~B}_{8}
$$ \& \[

5488.36\left(n_{1-7}=4\right)

\] \& \& \[

4.65
\] \&

\hline \& \& $$
\mathrm{A}_{8} \mathrm{~B}_{9}
$$ \& \[

6247.53\left(n_{1-8}=4\right)
\] \& \& 78.42 \&

\hline PCD 1250 \& 1414.5 \& A \& $1383(n=11)$ \& 100 \& \& 1.20

\hline \multirow[t]{2}{*}{I-1250b} \& \multirow[t]{2}{*}{2049.4} \& $\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$ \& $2004.34\left(n_{1}=14\right)$ \& \multirow[t]{2}{*}{100} \& 95.14 \& \multirow[t]{2}{*}{1.73}

\hline \& \& $\mathrm{A}_{2} \mathrm{~B}_{3}$ \& $3288.51\left(n_{1,2}=11\right)$ \& \& 4.86 \&

\hline \multirow[t]{2}{*}{II-1250b} \& \multirow[t]{2}{*}{1639.7} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{$1611(n=13)$} \& \multirow[t]{2}{*}{9.25} \& \& 1.26

\hline \& \& \& \& \& (continu \& on next page)

\hline
\end{tabular}

non-linear chromatography (NLC) functions to curves after their deconvolution. The obtained results are presented in Table 2.

4. Discussion of results

It was very important for the suggested method that the polyurethane mixture had to be purified carefully, i.e. unreacted diisocyanate and polyol monomers had to be removed therefrom. That can be accomplished by conservative evaporation in vacuum evaporators, what is not so frequently employed in practice, or by means of selective extraction [20]. The latter method was adopted for our work. It was necessary to find selective extraction solvents for every stage of the step-by-step polyaddition process, both for TDI and for hydroxyl monomers. Different polarity specifications of BD, POG and PCD had to be taken into consideration for that process [13].

Extraction was continued until the content of -NCO groups was obtained which conformed to that calculated theoretically. Fig. 4 shows diagrams for determined concentrations of -NCO groups in synthesised isocyanate products before and after extraction. The experimental values can be seen close to those calculated from the material balance-excess TDI must have been completely washed away from the products in practice. The presence of unconverted monomers was found to have a strong impact on viscosity of products obtained at successive stages of the polymerisation process: those monomers were masking essential changes in actual viscosities of products which were caused both by the use of polyols with higher and
higher molecular weights, and by the increasing molecular weight of oligourethanes.

It is apparent from Fig. 5 that the effects of those factors can be observed only after monomers have been separated. Viscosity figures for oligourethanes with - OH terminal groups were found to be higher than those for their isocyanate-terminated analogues and they generally become smaller when polyols used for the reaction have higher molecular weights. The IR spectra confirmed the expected structures of the obtained products.

As results from the examples of IR spectra (Figs. 6 and 7), the structures of oligomers obtained from the same polyols at odd stages (isocyanate prepolymers) and at even stages (urethane-hydroxyl prepolymers) were-as expected-very much similar within individual groups of compounds. Hence, the most essential differences should result solely from the sizes of molecules of individual oligomers. The band at about $2272 \mathrm{~cm}^{-1}$ which represents asymmetrical stretching vibrations of -NCO groups is the most specific band for isocyanates and it can be observed in case of isocyanate oligomers $\mathrm{A}_{n} \mathrm{~B}_{n+1}$ only. On the other hand, the band for stretching vibrations of -OH groups at $3450 \mathrm{~cm}^{-1}$ appears only in spectra obtained for hydroxyl oligomers $\mathrm{A}_{n+1} \mathrm{~B}_{n}$. When the molecular weight of an oligomer increases, absorption intensity decreases for both these bands, while higher intensities are observed for the amide I band (at $1730 \mathrm{~cm}^{-1}$) and amide II band (at $1536 \mathrm{~cm}^{-1}$). The former is shifted towards lower frequency values which proves the presence of hydrogen bonds, and the latter represents the combination of scissoring vibrations in $-\mathrm{N}-\mathrm{H}$ and stretching vibrations in $-\mathrm{C}-\mathrm{N}$ groups [21, 22].

No band was found at $2130 \mathrm{~cm}^{-1}$ in IR spectra which

Fig. 5. Viscosities of obtained urethane oligomers before and after extraction.
could represent carbodiimides, and a wide band was observed at $1695-1755 \mathrm{~cm}^{-1}$ (max. at $1725-1730 \mathrm{~cm}^{-1}$) which in theory could represent urethidiones formed during dimerisation of isocyanates. On the other hand, the band at $1410 \mathrm{~cm}^{-1}$, which is attributed to isocyanurates, appears in some spectra only and its signal is not very high. Thus, one can infer that only some small amount of excess isocyanates has been converted to undesirable by-products. That is essential for the concept of the whole study as it confirms that the conditions adopted for the synthesis have made it possible to obtain generally linear urethane oligomers with

Fig. 6. IR spectra of isocyanate oligomer and hydroxyl oligomer obtained from the second and third stages of the reaction of butan-1,4-diol and TDI (II-BD b and III-BD b as per Table 1).
-NCO terminal groups, even at a relatively high excess of the isocyanate monomer [23].

Confirmation of chemical structures of urethane oligomer chains (Table 2) made the first step towards learning complete compositions of synthesised polymers. Following the idea of scheme (2), PUs obtained at successive stages of the polyaddition process should be initially mixtures of monomers and oligomers, and after extraction-mixtures of predominantly oligourethanes, and it is necessary to identify individual components. This problem was solved by analysing individual samples with the use of size exclusion chromatography (GPC) as well as mass spectrometry (ESI and MALDI-TOF) methods in which mild excitation techniques were employed to take records of basic

Fig. 7. IR spectra of isocyanate oligomer and hydroxyl oligomer obtained from the first and second stages of the reaction of PCD-530 and TDI (I-530 and II-530 as per Table 1).
molecular ions. It was possible from GPC chromatograms which were recorded with the use of three detectors: RI, LS and DV , to obtain a reasonably precise function of molecular weight distribution (MWD) for individual samples of studied oligomers and to make their quantitative evaluation (Table 2).

The obtained data were correlated with the figures calculated from the mass balance for individual steps in the synthesis. It is obvious that the basic reason for polydispersity of every urethane oligomer sample is primarily polydispersity of the hydroxyl component itself. All diols, except for BD , were inhomogeneous materials as regards their chemical compositions. Hence, adequate polymerisation degrees n_{i} were required to be attributed to every component (i.e. to every peak) in chromatograms of POG or PCD. Then, in order to be able to compare homogeneity features of oligourethanes produced at successive polyaddition stages, the Peak Fit v4. software was employed to calculate the corresponding MWD curves. The exemplary charts are shown in Figs. 8-10.

The adopted procedure made it possible to observe the step-by-step growth of molecular weights of oligomers produced at every step of polymerisation. The best chromatographic separation was obtained for samples taken from the reactor just after step 1 and step 2 , when the chemical composition of the mixture analysed was reasonably simple. Good separation was then harder and harder to achieve as the mean molecular weights of products increased. The obtained MWD curves-especially for stage 5 and stage 6-became similar to those described in reports for high-molecular-weight PUs synthesised for example of ethylene glycol polyadipate, TDI or MDI and then expanded with ethylene glycol [24].

One dominant oligourethane is usually observed in the polymer mixtures after the first two stages; its structure results from adopted stoichiometry (Table 1). The chemical compositions of products obtained from further stages become much more complex and adopted stoichiometry is
decisive more for the types of terminal functional groups rather than for reaction selectivity. In parallel to the most welcome oligomer, there are always a few other products present and their shares happen to be comparable to that of the required product. Some small amounts of high-molecular-weight products appear as early as at the initial two steps. For example, step 1 will yield $\mathrm{A}_{1} \mathrm{~B}_{2}$ but also isocyanate oligourethanes with higher molecular weights $\left(A_{2} B_{3}\right.$ and $\left.A_{3} B_{4}\right)$ will be produced. Unconverted monomers can also be observed in some samples.

Further polymerisation steps produce compounds with higher molecular weights, as expected, but they also yield lower oligomers, probably by the reaction of monomers introduced with monomers which have not been completely removed from previously synthesised products.

The recorded chromatograms made the basis for the calculations of number average (\bar{M}_{n}) and weight average (\bar{M}_{w}) molecular weights as well as polydispersity degrees $\mathrm{PD}=\bar{M}_{\mathrm{w}} / \bar{M}_{\mathrm{n}}$ for the products formed. The values for the latter fall within 1.05-2.37 and they tend to be even closer to the scope of $1.1-1.3$. No distinct increase in the scatter of molecular weights could be observed along the sequence of polyaddition stages-that is advantageous for the process offered. The values of $\mathrm{PD}>1.3$ are specific for oligourethanes in which some amounts of monomers can be found after they have not been extracted out completely, and in particular for isocyanate prepolymers in which some small amounts of TDI are present.

The ESI and MALDI-TOF mass spectrometry methods were employed to unambiguously identify individual compounds within the analysed samples which had been found present on the basis of SEC analyses. The bands are visible in recorded MS spectra which can be attributed to the suggested molecular ions of oligomers, i.e. their sizes and structures, with the atomic weights of $\mathrm{Na}^{+}, \mathrm{K}^{+}$or H^{+} cations added, as results from the adopted excitation method. Majority of positive ions present in ESI spectra contain K which has been introduced as KJ, and some minor

Fig. 9. MWD curves for oligomers (I-V) 200b (Table 2).
part of them contain Na. MALDI-TOF spectra principally take records of adducts of oligomers and Na^{+}or H^{+}cations, and also possibly of K^{+}(about 15%) [1,2]. Additionally, isocyanate products reacted with methanol employed to dissolve samples which is also apparent in our findings.

The recorded spectra reveal generally a high number of M / z signals with much diversified intensities; after a detailed analysis, we managed to make signal-product pairs for majority of expected adducts. Theoretically calculated molecular weights of polyols and urethane oligomers match with the locations of their corresponding signals in MS spectra. Every spectrum has been made up of a specific sequence of signals arranged at the intervals of $M / z=44$ from each other, that corresponds to the structural unit of $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ - for POG, or at the intervals of $\mathrm{M} / \mathrm{z}=$ 114 (i.e. $-\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{O}-$) for PCD (Table 3).

The ESI spectra can take records of MWD only up to the value of $M / z=1200$. Hence, it was impossible to fully identify the components of the samples studied (Figs. 11 and 12) $[25,26]$. Additional information on the chemical
compositions of the investigated oligomers could be obtained by comparing ESI spectra to GPC findings.

The MALDI-TOF technique is capable of analysing a much broader scope of M / z. Just for illustration, Figs. 13 and 14 show exemplary spectra for oligomers obtained from two stages of reactions of TDI and POG 300, while the detailed interpretation of spectra for all the synthesised oligomers have been shown in Table 3.

The employed MS methods complement the chemical compositions of oligomers as found by GPC and make them reliable. Said compositions are much more complex than one could expect from the balance calculations and from kinetic modelling, still the general compatibility with the model has been kept. In the MS spectra recorded, signals can be seen, which represent, for example, oligourethanes created from POG or PCD molecules with various polymerisation degrees n_{i}. When individual molecular ions are precisely recorded with the use of MALDI-TOF technique, the compounds, which could not be isolated with the GPC method due to poor separation of individual

Table 3
Interpretation for mass spectra of urethane oligomers

Designations for oligomers as per Table 1	Type of MS method	No. of fig.	Band location (M/z)	Relative intensity (\%)	Probable structure of molecular ion	Calculated molecular weight (g/mol)
II-200b	ESI	12	365.1	100	$\mathrm{A}+\mathrm{K}^{+}$	365 ($n=7$)
			969.3	97.00	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{K}^{+}$	$969.34\left(n_{1-3}=4\right)$
			1013.4	100	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{K}^{+}$	$1013.34\left(n_{1,2}=4, n_{3}=5\right)$
	MALDI		542	48.25	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	$541.17\left(n_{1}=3, n_{2}=4\right)$
			954	100	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$953.34\left(n_{1-3}=4\right)$
			1279	30.07	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$1277.51\left(n_{1}=3, n_{2-4}=4\right)$
			1647	20.98	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	1645.68 ($\left.n_{1}=3, n_{2-5}=4\right)$
			2060	7.69	$\mathrm{A}_{6} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	2057.85 ($\left.n_{1-6}=4\right)$
			2428	3.50	$\mathrm{A}_{7} \mathrm{~B}_{6}+\mathrm{Na}^{+}$	$2426.02\left(n_{1-7}=4\right)$
III-200b	ESI MALDI		689.2	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$692.34\left(n_{1}=6\right)$
			610	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$609.34\left(n_{1}=5\right)$
			935	48.91	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$933.51\left(n_{1,2}=4\right)$
			1259	92.39	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	1257.68 ($\left.n_{1}=3, n_{2,3}=4\right)$
			1628	31.52	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	$1625.85\left(n_{1}=3, n_{2-4}=4\right)$
			1996	20.65	$\mathrm{A}_{5} \mathrm{~B}_{6}+\mathrm{Na}^{+}$	$1994.02\left(n_{1}=3, n_{2-5}=4\right)$
			2409	7.61	$\mathrm{A}_{6} \mathrm{~B}_{7}+\mathrm{Na}^{+}$	$2406.19\left(n_{1-6}=4\right)$
IV-200b	ESI		365.1	100	$\mathrm{A}+\mathrm{K}^{+}$	365 ($n=7$)
			645.2	38	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{K}^{+}$	$645.17\left(n_{1}=4, n_{2}=5\right)$
			969	35	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{K}^{+}$	$969.34\left(n_{1-3}=4\right)$
	MALDI		586	39.00	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	
			955	36.00	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$953.34\left(n_{1-3}=4\right)$
			1279	36.00	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$1277.51\left(n_{1}=3, n_{2-4}=4\right)$
			1692	100	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	$1689.68\left(n_{1-5}=4\right)$
			2060	52.00	$\mathrm{A}_{6} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	$2057.85\left(n_{1-6}=4\right)$
			2385	43.00	$\mathrm{A}_{7} \mathrm{~B}_{6}+\mathrm{Na}^{+}$	$2382.02\left(n_{1}=3, n_{2-7}=4\right)$
			2797	22.00	$\mathrm{A}_{8} \mathrm{~B}_{7}+\mathrm{Na}^{+}$	$2794.19\left(n_{1-8}=4\right)$
			3077	17.21	$\mathrm{A}_{9} \mathrm{~B}_{8}+\mathrm{Na}^{+}$	$3074.36\left(n_{1,2}=3, n_{3-9}=4\right)$
			3490	10.4	$\mathrm{A}_{10} \mathrm{~B}_{9}+\mathrm{Na}^{+}$	$3486.53\left(n_{1}=3, n_{2-10}=4\right)$
			3814	7.17	$\mathrm{A}_{11} \mathrm{~B}_{10}+\mathrm{Na}^{+}$	$3810.70\left(n_{1,2}=3, n_{3-11}=4\right)$
V-200b	ESI		689.2	94	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$692.34\left(n_{1}=6\right)$
			733.2	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$736.34\left(n_{1}=7\right)$
	MALDI		1129	100	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{Na}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1129.51\left(n_{1}=5, n_{2}=6\right)$
			1260	86.57	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	$1257.68\left(n_{1}=3, n_{2,3}=4\right)$
			1454	91.04	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{H}^{+}$	$1455.68\left(n_{1}=5, n_{2}=6\right)$
			1630	95.52	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	$1625.85\left(n_{1}=3, n_{2-4}=4\right)$
			1998	91.79	$\mathrm{A}_{5} \mathrm{~B}_{6}+\mathrm{Na}^{+}$	$1994.02\left(n_{1}=3, n_{2-5}=4\right)$
			2411	39.55	$\mathrm{A}_{6} \mathrm{~B}_{7}+\mathrm{Na}^{+}$	2406.19 ($n_{1-6}=4$)
I-300b	MALDI	13	718	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	717.34 ($n_{1}=6$)
			1218	11.84	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{Na}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1217.51\left(n_{1}=6, n_{2}=7\right)$
II-300b	MALDI		938	7.25	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	937.17 ($\left.n_{1,2}=8\right)$
			1262	100	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$1261.34\left(n_{1,2}=6, n_{3}=7\right)$
			1630	13.58	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$1629.68\left(n_{1}=5, n_{2-4}=6\right)$
			2130	20.99	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	$2129.68\left(n_{1-5}=6\right)$

Designations for oligomers as per Table 1	Type of MS method	No. of fig.	Band location (M/z)	Relative intensity (\%)	Probable structure of molecular ion	Calculated molecular weight (g/mol)
III-300b	MALDI		1061	43.90	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{H}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1063.51\left(n_{1,2}=5\right)$
			1630	100	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{H}^{+}$	1631.68 ($\left.n_{1}=6, n_{2,3}=7\right)$
			2086	14.63	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{H}^{+}$	$2087.85\left(n_{1,2}=6, n_{3,4}=7\right)$
			2498	13.41	$\mathrm{A}_{5} \mathrm{~B}_{6}+\mathrm{H}^{+}$	$2500.02\left(n_{1-4}=6, n_{5}=7\right)$
IV-300b	MALDI		1210	78.16	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$1217.51\left(n_{1-3}=6\right)$
			1675	32.18	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	1673.68 ($n_{1-4}=6$)
			2132	100	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	$2129.68\left(n_{1-5}=6\right)$
			3001	28.74	$\mathrm{A}_{6} \mathrm{~B}_{5}+\mathrm{H}^{+}$	$3003.85\left(n_{1,2}=7, n_{3-6}=8\right)$
			3546	10.34	$\mathrm{A}_{7} \mathrm{~B}_{6}+\mathrm{H}^{+}$	$3548.02\left(n_{1,2}=7, n_{3-7}=8\right)$
			3959	9.20	$\mathrm{A}_{8} \mathrm{~B}_{7}+\mathrm{H}^{+}$	$3960.19\left(n_{1-5}=7, n_{6-8}=8\right)$
V-300b	MALDI	14	1599	41.46	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{OH}$	1597.68 ($n_{1-3}=6$)
			2190	47.56	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{H}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2195.85\left(n_{1}=6, n_{2-4}=7\right)$
			2544	100	$\mathrm{A}_{5} \mathrm{~B}_{6}+\mathrm{H}^{+}$	$2544.02\left(n_{1-3}=6, n_{4,5}=7\right)$
			2956	32.93	$\mathrm{A}_{6} \mathrm{~B}_{7}+\mathrm{H}^{+}$	$2956.19\left(n_{1-5}=6, n_{6}=7\right)$
			3368	39.02	$\mathrm{A}_{7} \mathrm{~B}_{8}+\mathrm{H}^{+}$	3368.36 ($n_{1-7}=6$)
			3957	13.41	$\mathrm{A}_{8} \mathrm{~B}_{9}+\mathrm{H}^{+}$	
			4369	9.76	$\mathrm{A}_{9} \mathrm{~B}_{10}+\mathrm{H}^{+}$	$4368.7\left(n_{1-7}=6, n_{8,9}=7\right)$
POG 400	ESI		497.2	100	$\mathrm{A}+\mathrm{K}^{+}$	$497(n=10)$
I-400b	ESI		849.3	100	$\mathrm{A}_{1} \mathrm{~B}_{2}$	$850\left(n_{1}=11\right)$
II-400b	ESI MALDI		497.2	100	A $+\mathrm{K}^{+}$	$497(n=10)$
			350	100	$\mathrm{A}+\mathrm{Na}^{+}$	349 ($n=7$)
			911	8.66	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{H}^{+}$	$915.17\left(n_{1,2}=8\right)$
			1483	12.70	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$1481.34\left(n_{1-3}=8\right)$
			2028	1.54	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$2025.51\left(n_{1-4}=8\right)$
			2529	1.00	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	2525.68 ($\left.n_{1}=7, n_{2-5}=8\right)$
III-400b	ESI MALDI		849.1	100	$\mathrm{A}_{1} \mathrm{~B}_{2}$	$850\left(n_{1}=11\right)$
			742	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+2 \mathrm{CH}_{3} \mathrm{OH}$	738.34 ($n_{1}=7$)
			1288	13.38	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$1285.51\left(n_{1,2}=8\right)$
			1832	28.17	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	$1829.68\left(n_{1-3}=8\right)$
			2289	5.63	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	$2285.85\left(n_{1,2}=7, n_{3,4}=8\right)$
			2657	4.93	$\mathrm{A}_{5} \mathrm{~B}_{6}+\mathrm{Na}^{+}$	$2654.02\left(n_{1}=6, n_{2-5}=7\right)$
IV-400b	ESI MALDI		497.2	100	A $+\mathrm{K}^{+}$	$497(n=10)$
			350	100	$\mathrm{A}+\mathrm{Na}^{+}$	349 ($n=7$)
			851	8.06	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	$849.17\left(n_{1,2}=7\right)$
			1102	3.23	$\mathrm{A}_{2} \mathrm{~B}_{2}+\mathrm{H}^{+}$	$1100.34\left(n_{1}=7, n_{2}=8\right)$
			1527	3.23	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$1525.34\left(n_{1,2}=8, n_{3}=9\right)$
			2528	1.95	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	2525.68 ($\left.n_{1}=7, n_{2-5}=8\right)$
			3161	0.65	$\mathrm{A}_{6} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	3157.85 ($\left.n_{1}=7, n_{2-6}=8\right)$
			3661	0.43	$\mathrm{A}_{7} \mathrm{~B}_{6}+\mathrm{Na}^{+}$	$3658.02\left(n_{1-7}=8\right)$
V-400b	ESI		583.2	100	$\mathrm{A}_{1} \mathrm{~B}_{1}+\mathrm{K}^{+}$	$583.17\left(n_{1}=8\right)$

Designations for oligomers as per Table 1	Type of MS method	No. of fig.	Band location (M / z)	Relative intensity (\%)	Probable structure of molecular ion	Calculated molecular weight (g/mol)
			5098	2.94	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{Na}^{+}$	$5101.85\left(n_{1,2}=23, n_{3,4}=24\right)$
IV-1000b	MALDI		922	100	$\mathrm{A}+\mathrm{Na}^{+}$	$921(n=20)$
			2173	57.31	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	$2169.17\left(n_{1,2}=22\right)$
			3349	14.93	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{H}^{+}$	$3351.48\left(n_{1,2}=22, n_{3}=23\right)$
			4644	10.40	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{H}^{+}$	$4643.51\left(n_{1-4}=23\right)$
			5319	10.11	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{H}^{+}$	$5319.68\left(n_{1,2}=20, n_{3,4}=21\right)$
V-1000b	MALDI		1315	100	$\mathrm{Al}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	1313.17 ($\left.n_{1}=21\right)$
			2468	20.29	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{H}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$2471.51\left(n_{1,2}=21\right)$
			3495	7.25	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{H}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	3499.68 ($\left.n_{1,2}=20, n_{3}=21\right)$
			4597	3.93	$\mathrm{A}_{4} \mathrm{~B}_{5}+\mathrm{H}^{+}$	$4595.85\left(n_{1}=20, n_{2-4}=21\right)$
			5714	2.85	$\mathrm{A}_{5} \mathrm{~B}_{6}+\mathrm{H}^{+}$	$5712.02\left(n_{1}=20, n_{2-5}=21\right)$
			6681	2.37	$\mathrm{A}_{6} \mathrm{~B}_{7}+\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{OH}$	$6684.19\left(n_{1-5}=20, n_{6}=21\right)$
PCD 530	MALDI		586	100	$\mathrm{A}+\mathrm{Na}^{+}$	$585(n=4)$
II-530b	MALDI		358	100	$\mathrm{A}+\mathrm{Na}^{+}$	357 ($n=2$)
			1375	14.81	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$1373.34\left(n_{1-3}=2\right)$
III-530b	MALDI		1054	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{OH}$	$1057.34\left(n_{1}=5\right)$
			1679	56.00	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{OH}$	$1679.51\left(n_{1,2}=4\right)$
			2380	10.40	$\mathrm{A}_{3} \mathrm{~B}_{4}+\mathrm{H}^{+}$	2383.68 ($\left.n_{1-3}=4\right)$
IV-530b	MALDI		359	100	$\mathrm{A}+\mathrm{Na}^{+}$	357 ($n=2$)
			863	11.11	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	$865.17\left(n_{1,2}=2\right)$
			1377	1.47	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$1373.34\left(n_{1-3}=2\right)$
			1878	0.73	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$1881.51\left(n_{1-4}=2\right)$
PCD 1250	MALDI		586	100	$\mathrm{A}+\mathrm{Na}^{+}$	$585(n=4)$
II-1250b	MALDI		815	100	$\mathrm{A}+\mathrm{Na}^{+}$	815 ($n=6$)
			1894	3.01	$\mathrm{A}_{2} \mathrm{~B}_{1}+\mathrm{Na}^{+}$	$1891.17\left(n_{1}=6, n_{2}=7\right)$
			3201	2.37	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	3198.34 ($\left.n_{1,2}=7, n_{3}=8\right)$
III-1250b	MALDI		995	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$997.17\left(n_{1}=4\right)$
			1252	45.00	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{H}^{+}$	$1253.34\left(n_{1}=7\right)$
			1553	40.00	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$1555.51\left(n_{1}=3, n_{2}=4\right)$
IV-1250b	MALDI		1155	100	$\mathrm{A}+\mathrm{Na}^{+}$	1155 ($n=9$)
			3884	0.95	$\mathrm{A}_{3} \mathrm{~B}_{2}+\mathrm{Na}^{+}$	$3881.34\left(n_{1,2}=9, n_{3}=10\right)$
			4503	0.63	$\mathrm{A}_{4} \mathrm{~B}_{3}+\mathrm{Na}^{+}$	$4503.51\left(n_{1}=7, n_{2-4}=8\right)$
			5241	0.48	$\mathrm{A}_{5} \mathrm{~B}_{4}+\mathrm{Na}^{+}$	$5239.68\left(n_{1}-5=7\right)$
V-1250b	MALDI		994	55.56	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{Na}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$997.17\left(n_{1}=4\right)$
			1201	100	$\mathrm{A}_{1} \mathrm{~B}_{2}+\mathrm{H}^{+}+2 \mathrm{CH}_{3} \mathrm{OH}$	$1203.34\left(n_{1}=6\right)$
			1527	19.44	$\mathrm{A}_{2} \mathrm{~B}_{3}+\mathrm{H}^{+}$	$1533.51\left(n_{1}=3, n_{2}=4\right)$

Designations: (1) n_{i}-polymerisation degree (DP) in POG or PCD.

Fig. 11. ESI spectrum for oligourethane I-200b (Table 3).
components, even with the use of three chromatographic columns connected in parallel, can be identified. Some MS spectra reveal the presence of oligomers with the compositions close to expectations, which seemed to be 'missing' in GPC, while some other spectra demonstrate many more high-molecular-weight products which have been recorded in chromatograms in the form of so-called 'tails'.

We also made attempts to correlate the findings from quantitative determinations with the data obtained from mass balances for the reactions (Table 1). It was assumed for the qualitative evaluation of chromatograms that the peak areas were representative for concentrations of the components, and the linear performance profile was also assumed for the RI detector. The values of $\mathrm{d} n / \mathrm{d} c$ for monomers are in fact lower than those for oligomers, and hence the concentrations calculated for the former could be overestimated [27,28]. Deviations from $\mathrm{d} n / \mathrm{d} c$ for oligomers higher than tetramers were assumed to be negligible and thus the detector signals to be proportional to concen-

Fig. 12. ESI spectrum for oligourethane II-200b. (Table 3).
trations. Deconvolution of poorly separated peaks was necessary for quantitative measurements by the internal standardization method, what was possible with the use of the computer software.

The results calculated theoretically and the findings from the GPC method are compared in Table 2. Good correlation can, in most cases, be observed for those two sets of data. The differences result from the fact that not only the principal oligomer-at the highest volume-is recorded in GPC chromatograms and MS spectra. Other high-molecu-lar-weight products have also been observed and their volumes are much higher than those obtained from the balance. Moreover, chromatograms prove the presence of some amounts of unconverted monomers and oligomers with lower molecular weights, what could not be taken into consideration for theoretical calculations. Hence, the findings from the SEC analyses can be slightly overstated in relation to actual values.

5. Conclusions

As comes from the literature reports, developing new methods of synthesis for isocyanate and hydroxyl intermediates can be found useful for the manufacturing processes capable of yielding, for example, new types of elastomers, coatings and aqueous emulsions of PUs. The two-stage bulk polyaddition process of diisocyanates and polyols, which is most frequently employed, will not produce any well-defined and regular segmented structure. This is most probably not only because of chain irregularities (imperfection) but also due to considerable polydispersity of chemical composition and MWD of thus obtained linear PUs. That is typical for the equilibrium polymerisation process in which many molecules are present at every moment in the reaction system-basically monomers at the beginning, and then oligourethanes which are progressively produced and which simultaneously decay over time. The need to extend the prepolymer chains afterwards with the use of low-molecular-weight compounds makes the composition of the polyurethane mixture even more complicated. It is, hence, justified to develop a method which can give us all a tool to much better control the structure and that means to control the properties of polyurethanes.

The computer simulation based on the kinetic model for the step-by-step polyaddition process was found useful in developing grounds for the polyaddition process capable of yielding linear urethane oligomers with -OH and -NCO terminal groups and narrow MWDs. Our studies proved that those products could be obtained in a multi-staged polyaddition process of $2,4-\mathrm{TDI}$ and $2,6-\mathrm{TDI}$ with various hydroxyl compounds: low-molecular-weight diol (BD), polyethers (POG) or polyesters (PCD), with the excessive amount of one reacting substance employed. These reactions can be carried out in bulk, with no external catalyst, in

Fig. 13. MALDI-TOF spectrum for oligourethane I-300b (Table 3).
the presence of benzoyl chloride which stabilises urethaneisocyanate prepolymers produced. However, it is necessary to separate excess amounts of monomers after every process stage-that can be done by means of selective extraction methods.

The structural studies involved the GPC as well as IR, ESI and MALDI-TOF spectrometry methods and they could identify all intermediates-urethane oligomers which were progressively produced and which simultaneously decayed in the step-by-step polymerisation process. Chemical structures of oligourethanes obtained from the same polyols
at odd stages (isocyanate prepolymers) and at even stages (urethane-hydroxyl prepolymers) were-as expectedmuch similar within particular groups of compounds, and the essential differences refer to the molecular sizes of oligomers. The presence of unconverted monomers clearly affects the viscosity specifications of the products obtained from downstream stages of the polymerisation process. After thorough purification of products, said viscosity is dependent on molecular weight of polyol employed in the reaction and on the process stage which yielded the product in question.

2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800

One dominant oligourethane is usually observed in the polymer mixture obtained after the first two polyaddition stages. Its structure is determined by the adopted stoichiometry. Chemical compositions of products from further stages become much more complex. Hence, the stoichiometric ratio is rather decisive for the type of terminal functional groups than for the reaction selectivity. The expected oligomer is always accompanied by a few other products which can be present even at comparable concentrations. It happens frequently that some small amounts of high-molecular-weight products appear as early as at the initial two stages of the process. These compound, however, always have identical end groups: -NCO or -OH .

It is possible to restrain the polydispersity degrees for the obtained oligomers to the range of $1.1-1.3$, and-what is significant-no clear increase in MWD is observed with the progress of the polyaddition stage.

The findings for - NCO group contents and quantitative determinations with the GPC method confirmed the general consistence of expected chemical compositions of oligomers and the data calculated on the basis of mass balances for individual process stages.

Since excessive amounts of one of monomers need to be separated after every process stage, this method is applicable for semi-commercial plants of big laboratory stands to produce oligourethanes with precisely defined
chemical compositions and regular chain structures. Such products can then be further processed, i.e. expanded to form linear polyurethanes with narrow MWDs and subjected to cross-linking, to yield foamed plastics or elastomers, e.g. with the RIM technique, or they can be used as macro-urethane cores on which chains of vinyl polymers can be grafted. The future process arrangement(s) must recycle separated monomers to the loop. The idea of such a process was presented in a diagram (Fig. 15) [29].

Then, it will be necessary to reveal the effect(s) of chemical structures of PUs synthesised from oligourethanes presented herein on supermolecular structures and thermalmechanical properties of those PUs against PUs synthesised from the same feedstocks but in a single-stage method.

Acknowledgements

The authors which to thank Prof. Jerzy Silbering from the Jagiellonian University in Cracow, Faculty of Chemistry, for taking ESI spectra of the oligomers produced, and Mr Witold Pękala M.Sc., who translated this study into English.

This study was performed within the research project No. 3T09B 10020 which was financially supported by the Committee for Scientific Research in Warsaw.

References

[1] Bernacca GM, Gulbransen MJ, Wilkinson R, Wheatley DJ. Biomaterials 1998;19:1151.
[2] US Patent No. 5786426; 1998.
[3] Pohl M-M, Dany R, Mix R, Gähde J, Hinrichsen G. Polymer 1996;37: 2173.
[4] Zhang B, Tan H. Eur Polym J 1998;34:571.
[5] Park YS, Kang YS, Chung DJ. e-Polymers 2002, no. 016. http://www. e-polymers.org.
[6] Anzlovar A, Anzur I, Malavasic T. Polym Bull 1997;39:339.
[7] US Patent No. 5747392; 1998.
[8] Kim BK, Tharanikkkasu K, Lee JS. Colloid Polym Sci 1999;277:285.
[9] Jagur-Grodzinski J. React Funct Polym 2001;49:1.
[10] Flory P. Principles of polymer chemistry. Cornell V. Press; 1952.
[11] Król P, Pilch-Pitera B. Eur Polym J 2002;37:251.
[12] Król P, Pilch-Pitera B. Eur Polym J 2003;39:1229.
[13] Li F, Zuo J, Dong L, Weng H. Eur Polym J 1998;34:56.
[14] Yilgör E, Yurtsever E, Yilgör I. Polymer 2002;43:6551.
[15] Król P. Int Polym Sci Technol 1997;24:100.
[16] Król P, Heneczkowski M. Polimery 2000;45:775.
[17] Król P, Galina H, Kaczmarski K. Macromol Theory Simul 1999;8: 129.
[18] Król P, Pilch-Pitera B. Polimery 2002;47:77.
[19] Stagg FE. Analyst 1966;71:557.
[20] US Patent No. 3883577; 1975.
[21] Furer VL. J Mol Struct 2000;520:117.
[22] Zha L, Wu M, Jang J. J Appl Polym Sci 1999;73:2895.
[23] Semsaderzadeh MA, Navarchian AH. J Polym Engng (2002), report presented for publication.
[24] Halas J, Krawiecki C. Polimery 1979;34:440.
[25] Yontz DJ, Hsu SL. Macromolecules 2000;33:8415-20.
[26] Rokicki G, Piotrowska A. Polymer 2002;43:2927-35.
[27] Esser E, Keil C, Braun D. Polymer 2000;41:4039-404.
[28] Prochazka F, Nicolai T, Durand D. Macromolecules 2000;33:1703-9.
[29] Pilch-Pitera B. Synthesis of urethane oligomers as intermediates for the production of polyurethanes with controlled molecular weight distribution. Doctor's Thesis, Rzeszów University of Technology; 2003.

[^0]: * Corresponding author. Tel.: +48-17-865-1579; fax: +48-17-854-3655.

 E-mail address: pkrol@ prz.rzeszw.pl (P. Król).

